When It’s Hot Outside, Make More MW

Your Gas Turbine Can Increase Output and Revenue with Adjustable Peak Firing

The reports say that June was the hottest month ever in Texas, however, August may have blown that record away. As an example, ERCOT reported that on Tuesday, August 13, over 73,000 MWh were generated largely in support of every air conditioner in the state running full out. For a short period that day, Reuters reported real-time prices briefly soared to $9,000 per megawatt-hour as consumers cranked up air conditioners to escape the brutal heatwave.

Turbine Technology Services offers DynaFlex Performance™ tools that take advantage of this situation and help gas turbine operators produce more MWh and revenue.

Extra Power When You Need It

Depending on their power purchase agreement, gas turbine operators may receive payment based on their maximum generation capacity, or they may need to hold a certain amount of generation in reserve as a percentage of their maximum capacity. For these reasons, adding peak firing capability to both simple and combined cycle units can bring economic benefits without a substantial impact on maintenance costs when the peak fire capability is used strategically at times of high demand.

Traditional peak firing is commonly a fixed, incremental amount of firing temperature above the rated baseload firing temperature. This increase can equate to at least a 2.5 percent increase in the output above baseload for newer GE units and potentially more for vintage GE units. Increasing firing temperature also increases NOx emissions – which means operators must take into account NOx emission limits as they incrementally increase firing.

Adjustable Peak Firing Keeps NOx Emissions in Check

Adjustable peak firing is a valuable tool in cases where emission values exceed allowable limits before the unit reaches its standard peak firing limit. It allows the operator to increase the load to take advantage of periods of high electricity prices while staying within the maximum allowable NOx emissions dictated by their emissions permit. This mode is especially useful for merchant plants with simple cycle units or with combined cycle units with SCRs.

With TTS’s adjustable peak option, operators slowly and incrementally increase output in steps of 0.1-0.2 MW, monitoring NOx emissions as load increases.

Operators continue increasing the load until they reach a NOx value that they decide provides an acceptable degree of margin in their situation. The adjustable peak option maintains an upper firing temperature limit equal to the standard unit peak firing temperature.

Implementation of adjustable peak firing requires control system logic modifications, HMI modifications (to select adjustable peak fire) and combustion tuning necessary to install peak firing capability.  Take advantage of this hot weather, keep your air conditioner running and make more MWh and revenue in the process.

How Can We Help You?

Contact TTS and speak with a gas turbine engineer for a custom-tailored solution that addresses your unit’s operating parameters, plant requirements, and business objectives explicitly.

Leave us a message or call (407) 677-0813 to speak with an expert today.

Modernizing Vintage Gas Turbines in the Natural Gas Pipeline

Efficiently manage your assets to improve the bottom line

Modernization involves more than migrating from an old vintage system to its modern equivalent. It requires rethinking applications and upgrading multiple technologies. But in the end, it can transform a compression station’s processes and help reposition its operations for the next 20 to 30 years.

To demonstrate, in 2012, TTS was involved in the conversion project of a legacy GE Frame 5001 gas turbine.  The PLC-based turbine control system had become obsolete due to mechanical wear and outdated manual calibrations in the field.  TTS simplified the gas turbine fuel control system by eliminating the unnecessary pre-control valve pressure regulation.  The upgrade allowed for a more efficient, innovative fuel control system by reducing preventative maintenance costs from $5,000 to $10,000 per year to under $1,000 per year.  Furthermore, updating critical gas turbine instrumentation allows production machines to adapt to modern demands and ensures a reliable, productive service life.

The full benefit of a system upgrade is achieved if you do the upgrade in conjunction with a rewire and some device upgrades to support the new control systems and optimize its available features.  The primary benefit of a system upgrade is the availability of information that can be gathered, logged, and stored.  This information is paramount for operations and maintenance performance trending, predictive maintenance programs and troubling shooting problems.

There are, essentially, two types of system upgrades – drop-in and retrofit.  Read on to find out more about these system upgrades and their benefits:

Drop-in Upgrade

In a drop-in upgrade, there is no need for wiring changes, drawing changes, or engineering beyond specifying the equipment.  Examples would be:

  • Battery Systems – Charger and Battery
  • Motor Control Centers – where the control circuits are maintained

Retrofits

Complete retrofits, on the other hand, require detailed design engineering and the provision of new design documentation – specifications/drawings/software, etc. These include those above and the following:

  • Turbine Control Systems
  • Station Control Panels
  • Emergency Shutdown Systems
  • Compressor Controls
  • Motor Control Centers: Intelligent centers with control over Ethernet or DeviceNet
  • Electronic Valves applied to Fuel systems or replacing hydraulic actuators of any sort – IGV, for example.

By restoring old or obsolete automation systems that make up only a fraction of plant capital costs, pipeline operators can more efficiently manage their assets to help improve their bottom line.  Furthermore, they can leverage advanced analytics to monitor and optimize multiple stations across their pipeline fleet.

Making Obsolete Systems Operational Again

Gas turbines have recently become the technology of choice for new U.S. compressor stations, but a lot of Frame 3 and Frame 5 gas turbine units have been in service for decades and are still in operation. Modernization presents an opportunity to mitigate the risks of vintage systems and help improve business performance long term.

The need for station and unit control reliability is critical in these decades-old facilities. But their aging or obsolete systems, combined with the lack of operational and diagnostic information available in those vintage systems, can make reliability elusive.

As a result, these compression stations experience a greater risk of production stoppages and downtime. They are more likely to face support challenges and difficulty with maintaining regulatory compliance. Likewise, they spend valuable time and resources performing manual data collection and reporting.

Modernizing to a contemporary balance of plant control systems can alleviate these challenges and facilitate tighter integration between unit control and associated subsystems.

TTS: We Know Gas Turbines

Turbine Technology Systems (TTS) is an alternative to the OEMs with 36 years of experience and gas turbine expertise. We currently serve six out of the top ten largest pipeline operators in North America with services including commissioning, fuel system upgrades, the balance of plant controls, control upgrades and control panels.

Learn more by visiting our website or contact Frank Hoegler, 407-902-1344